DGT DOCS
  • 1. INTRODUCTION
    • 1.1 Executive Summary
    • 1.2 Why DGT
    • 1.3 Distributed Ledgers Technology
      • 1.3.1 Decentralization approach
      • 1.3.2 Consensus Mechanism
      • 1.3.3 Transactions
      • 1.3.4 Layered Blockchain Architecture
      • 1.3.5 Tokenomics
      • 1.3.6 Web 3 Paradigm
      • 1.3.7 Common Myths about Blockchain
    • 1.4 The DGT Overview
      • 1.4.1 Platform Approach
      • 1.4.2 DGT Functional Architecture
      • 1.4.3 Technology Roadmap
    • 1.5 How to create a Solution with DGT Networks
    • 1.6 Acknowledgments
  • 2. REAL WORLD APPLICATIONS
    • 2.1 Case-Based Approach
      • 2.1.1 DGT Mission
      • 2.1.2 The Methodology
      • 2.1.3 Case Selection
    • 2.2 Supply Chain and Vertical Integration
      • 2.2.1 Logistics Solution for Spare Parts Delivery
      • 2.2.2 DGT Based Solution for Coffee Chain Products
    • 2.3 Innovative Financial Services
      • 2.3.1 Crowdfunding Platform
      • 2.3.2 Real World Assets Tokenization
      • 2.3.3 Virtual Neobank over DGT Network
      • 2.3.4 DGT based NFT Marketplace
    • 2.4 Decentralized Green Energy Market
      • 2.4.1 Peer To Peer Energy Trading
      • 2.4.2 DGT based Carbon Offset Trading
    • 2.5 B2B2C Ecosystems and Horizontal Integration
      • 2.5.1 KYC and User Scoring
      • 2.5.2 Decentralized Marketing Attribution
      • 2.5.3 Case Decentralized Publishing Platform
      • 2.5.4 Value Ecosystem
    • 2.6 More Cases
  • 3. DGT ARCHITECTURE
    • 3.1 Scalable Architecture Design
      • 3.1.1 High Level Architecture
      • 3.1.2 DGT Approach
      • 3.1.3 Unique contribution
      • 3.1.4 Component Based Architecture
    • 3.2 Performance Metrics
    • 3.3 Network Architecture
      • 3.3.1 Nework Architecture in General
      • 3.3.2 Network Identification
      • 3.3.3 H-Net Architecture
      • 3.3.4 Transport Level
      • 3.3.5 Segments
      • 3.3.6 Static and Dynamic Topologies
      • 3.3.7 Cluster Formation
      • 3.3.8 Node Networking
      • 3.3.9 Permalinks Control Protocol
    • 3.4 Fault-Tolerant Architecture
      • 3.4.1 Introduction to Fault Tolerance
      • 3.4.2 F-BFT: The Hierarchical Consensus Mechanism
      • 3.4.3 Cluster Based Algorithms
      • 3.4.4 Arbitrator Security Scheme
      • 3.4.5 Heartbeat Protocol
      • 3.4.6 Oracles and Notaries
      • 3.4.7 DID & KYC
    • 3.5 Transactions and Performance
      • 3.5.1 Transaction Basics
      • 3.5.2 Transaction Processing
      • 3.5.3 Transaction and block signing
      • 3.5.4 Transaction Families
      • 3.5.5 Transaction Receipts
      • 3.5.6 Smart Transactions
      • 3.5.7 Private Transactions
      • 3.5.8 Multi signature
    • 3.6 Data-Centric Model
      • 3.6.1 Data layer overview
      • 3.6.2 Global State
      • 3.6.3 Genesis Record
      • 3.6.4 Sharding
      • 3.6.5 DAG Synchronization
    • 3.7 Cryptography and Security
      • 3.7.1 Security Architecture Approach
      • 3.7.2 Base Cryptography
      • 3.7.3 Permission Design
      • 3.7.4 Key Management
      • 3.7.5 Encryption and Decryption
      • 3.7.6 Secure Multi Party Computation
      • 3.7.7 Cryptographic Agility
      • DGTTECH_3.8.4 Gateway Nodes
    • 3.8 Interoperability
      • 3.8.1 Interoperability Approach
      • 3.8.2 Relay Chain Pattern
      • 3.8.3 Virtual Machine Compatibility
      • 3.8.4 Gateway Nodes
      • 3.8.5 Token Bridge
    • 3.9 DGT API and Consumer Apps
      • 3.9.1 Presentation Layer
      • 3.9.2 Application Architecture
    • 3.10 Technology Stack
    • REFERENCES
  • 4. TOKENIZATION AND PROCESSING
    • 4.1 Introduction to Tokenization
      • 4.1.1 DGT Universe
      • 4.1.2 Driving Digital Transformation with Tokens
      • 4.1.3 Real-World Tokenization
      • 4.1.4 Key Concepts and Definitions
    • 4.2 Foundations of Tokenization
      • 4.2.1 Definition and Evolution of Tokenization
      • 4.2.2 Tokenization in the Blockchain/DLT Space
      • 4.2.3 The Tokenization Process
      • 4.2.4 Tokenization on the DGT Platform
      • 4.2.5 Regulatory and Legal Aspects of Tokenization
      • 4.2.6 Typical Blockchain-Based Business Models
    • 4.3 The DEC Transaction Family
      • 4.3.1 DEC Transaction Family Overview
      • 4.3.2 DEC Token Features
      • 4.3.3 DEC Token Protocol
      • 4.3.4 DEC Account Design
      • 4.3.5 DEC Transaction Family Flow
      • 4.3.6 DEC Commands
      • 4.3.7 DEC Processing
      • 4.3.8 Payment Gateways
    • 4.4 Understanding Secondary Tokens
      • 4.4.1 The different types of tokens supported by DGT
      • 4.4.2 How secondary tokens are produced
  • 5. EXPLORING TOKENOMICS
    • 5.1 Introduction
      • 5.1.1 What does tokenomics mean?
      • 5.1.2 Goals of Building the Model for DGT Network
      • 5.1.3 Tokens vs Digital Money
      • 5.1.4 The Phenomenon of Cryptocurrency
      • 5.1.5 Basic Principles of Tokenomics
      • 5.1.6 AB2023 Model
    • 5.2 Node & User Growth
      • 5.2.1 Node Ecosystem
      • 5.2.2 User Growth and Retention Modeling
    • 5.3 Transactions
      • 5.3.1 Transaction Amount Components
      • 5.3.2 Shaping the Transaction Profile: A Three-pronged Approach
      • 5.3.3 Calculation of Transaction Number
    • 5.4 Network Performance Simulation
      • 5.4.1 Endogenous Model
      • 5.4.2 Network Entropy
      • 5.4.3 Network Utility
    • 5.5 Token Supply Model
      • 5.5.1 Introduction to Supply and Demand Dynamics
      • 5.5.2 Token distribution
      • 5.5.3 Supply Protocol
      • 5.5.4 Token Balance and Cumulative Supply
    • 5.6 Token Demand Model
      • 5.6.1 Node-Base Demand
      • 5.6.2 Transaction-Based Token Demand
      • 5.6.3 Staking Part Modeling
      • 5.6.4 Total Demand
    • 5.7 Token Price Simulation
      • 5.7.1 Nelson-Siegel-Svensson model
      • 5.7.2 The Price Model
    • 5.8 Decentralization Measurement
      • 5.8.1 Active Node Index
      • 5.8.2 Node Diversity in Hybrid Networks
      • 5.8.3 Token distribution
      • 5.8.4 Integral Calculation of Decentralization Metric
    • 5.9 Aggregated Metrics
      • 5.9.1 Transaction Throughput: Evaluating Network Performance and Scalability
      • 5.9.2 Market Capitalization: A Dimension of Valuation in Cryptocurrency
      • 5.9.3 Total Value Locked (TVL): A Spotlight on Network Engagement and Trust
  • 6. ADMINISTRATOR GUIDE
    • 6.1 Introduction
      • 6.1.1 Administrator Role
      • 6.1.2 Platform sourcing
      • 6.1.3 DGT Virtualization
      • 6.1.4 Using Pre-Built Virtual Machine Images
      • 6.1.5 Server Preparation
      • 6.1.6 OS Setup and initialization
    • 6.2 DGT CORE: Single Node Setup
      • 6.2.1 Launch the First DGT Node
      • 6.2.2 Dashboard setup
      • 6.2.3 Nodes Port Configuration
      • 6.2.4 Single Node Check
    • 6.3 DGT CORE: Setup Private/Public Network
      • 6.3.1 Network launch preparation
      • 6.3.2 A Virtual Cluster
      • 6.3.3 A Physical Network
      • 6.3.4 Attach node to Existing Network
    • 6.4 DGT Dashboard
    • 6.5 DGT CLI and base transaction families
    • 6.6 GARANASKA: Financial Processing
      • 6.6.1 Overview of DGT’s financial subsystem
      • 6.6.2 DEC emission
      • 6.6.3 Consortium account
      • 6.6.4 User accounts
      • 6.6.5 Payments
    • 6.7 Adjust DGT settings
      • 6.7.1 DGT Topology
      • 6.7.2 Manage local settings
    • 6.8 DGT Maintenance
      • 6.8.1 Stopping and Restarting the Platform
      • 6.8.2 Backing up Databases
      • 6.8.3 Network Performance
      • 6.8.4 Log & Monitoring
Powered by GitBook
On this page
  1. 4. TOKENIZATION AND PROCESSING
  2. 4.1 Introduction to Tokenization

4.1.3 Real-World Tokenization

Tokenization is revolutionizing various sectors by enabling fractional ownership, enhancing liquidity, and offering new ways of representing value. In this section, we will delve into specific examples of how tokenization is applied in different industries, showcasing the transformation it brings (Lynn, Mooney, Rosati, & Cummins, 2019).

#

Area

Model Overview

Simplified Actions

Monetization and Benefits

1

Crypto-banking Services

Develop a crypto bank that offers virtual crypto cards integrated with fiat processing.

Establish a payment gateway, connect to blockchain, issue virtual cards.

Banks can earn via transaction fees, subscription fees for value-added services. Helps banks integrate crypto easily and serve tech-savvy customers.

2

Carbon Credits Marketplace

Build a marketplace for tokenizing and trading carbon credits.

Establish rules for credit tokenization, build a trading platform.

Transaction fees from trading. It promotes a sustainable economy and offers a seamless trading platform.

3

Real-Estate Tokenization

Tokenize real estate properties for investment and easy liquidation.

Define asset value, tokenize assets, create a trading platform.

Asset owners can liquidate quickly, investors get an easy way to enter the real estate market. Platform can earn from transaction fees.

4

Food-Chain Loyalty Program

Virtual tokens as part of a loyalty program for food chain businesses.

Define token value, create a token distribution and redemption system.

Increases customer loyalty, frequency of visits, and average spend. Businesses get data on customer behavior.

5

Crowd Financing Platform

A platform for producers and consumers for complex model compound loans.

Define rules for loans, connect borrowers and lenders, facilitate transactions.

Platform can earn from transaction fees. Provides an efficient, transparent platform for lending and borrowing.

6

Gold-Backed Asset Tokenization

Tokenize gold-backed assets for easy investment and trading.

Define gold value, tokenize assets, create a trading platform.

Owners can liquidate quickly, investors get an easy way to enter the gold market. Platform can earn from transaction fees.

These models, while promising, are high-level concepts and real-world implementations will be significantly more complex. Regulatory compliance, technological challenges, market risks, and other factors can influence these models. Each use case has unique metrics for success and requires a custom monetization strategy. As the landscape of tokenization is rapidly evolving, staying updated and adaptable is key to harnessing its full potential.

Previous4.1.2 Driving Digital Transformation with TokensNext4.1.4 Key Concepts and Definitions

Last updated 1 year ago