DGT DOCS
  • 1. INTRODUCTION
    • 1.1 Executive Summary
    • 1.2 Why DGT
    • 1.3 Distributed Ledgers Technology
      • 1.3.1 Decentralization approach
      • 1.3.2 Consensus Mechanism
      • 1.3.3 Transactions
      • 1.3.4 Layered Blockchain Architecture
      • 1.3.5 Tokenomics
      • 1.3.6 Web 3 Paradigm
      • 1.3.7 Common Myths about Blockchain
    • 1.4 The DGT Overview
      • 1.4.1 Platform Approach
      • 1.4.2 DGT Functional Architecture
      • 1.4.3 Technology Roadmap
    • 1.5 How to create a Solution with DGT Networks
    • 1.6 Acknowledgments
  • 2. REAL WORLD APPLICATIONS
    • 2.1 Case-Based Approach
      • 2.1.1 DGT Mission
      • 2.1.2 The Methodology
      • 2.1.3 Case Selection
    • 2.2 Supply Chain and Vertical Integration
      • 2.2.1 Logistics Solution for Spare Parts Delivery
      • 2.2.2 DGT Based Solution for Coffee Chain Products
    • 2.3 Innovative Financial Services
      • 2.3.1 Crowdfunding Platform
      • 2.3.2 Real World Assets Tokenization
      • 2.3.3 Virtual Neobank over DGT Network
      • 2.3.4 DGT based NFT Marketplace
    • 2.4 Decentralized Green Energy Market
      • 2.4.1 Peer To Peer Energy Trading
      • 2.4.2 DGT based Carbon Offset Trading
    • 2.5 B2B2C Ecosystems and Horizontal Integration
      • 2.5.1 KYC and User Scoring
      • 2.5.2 Decentralized Marketing Attribution
      • 2.5.3 Case Decentralized Publishing Platform
      • 2.5.4 Value Ecosystem
    • 2.6 More Cases
  • 3. DGT ARCHITECTURE
    • 3.1 Scalable Architecture Design
      • 3.1.1 High Level Architecture
      • 3.1.2 DGT Approach
      • 3.1.3 Unique contribution
      • 3.1.4 Component Based Architecture
    • 3.2 Performance Metrics
    • 3.3 Network Architecture
      • 3.3.1 Nework Architecture in General
      • 3.3.2 Network Identification
      • 3.3.3 H-Net Architecture
      • 3.3.4 Transport Level
      • 3.3.5 Segments
      • 3.3.6 Static and Dynamic Topologies
      • 3.3.7 Cluster Formation
      • 3.3.8 Node Networking
      • 3.3.9 Permalinks Control Protocol
    • 3.4 Fault-Tolerant Architecture
      • 3.4.1 Introduction to Fault Tolerance
      • 3.4.2 F-BFT: The Hierarchical Consensus Mechanism
      • 3.4.3 Cluster Based Algorithms
      • 3.4.4 Arbitrator Security Scheme
      • 3.4.5 Heartbeat Protocol
      • 3.4.6 Oracles and Notaries
      • 3.4.7 DID & KYC
    • 3.5 Transactions and Performance
      • 3.5.1 Transaction Basics
      • 3.5.2 Transaction Processing
      • 3.5.3 Transaction and block signing
      • 3.5.4 Transaction Families
      • 3.5.5 Transaction Receipts
      • 3.5.6 Smart Transactions
      • 3.5.7 Private Transactions
      • 3.5.8 Multi signature
    • 3.6 Data-Centric Model
      • 3.6.1 Data layer overview
      • 3.6.2 Global State
      • 3.6.3 Genesis Record
      • 3.6.4 Sharding
      • 3.6.5 DAG Synchronization
    • 3.7 Cryptography and Security
      • 3.7.1 Security Architecture Approach
      • 3.7.2 Base Cryptography
      • 3.7.3 Permission Design
      • 3.7.4 Key Management
      • 3.7.5 Encryption and Decryption
      • 3.7.6 Secure Multi Party Computation
      • 3.7.7 Cryptographic Agility
      • DGTTECH_3.8.4 Gateway Nodes
    • 3.8 Interoperability
      • 3.8.1 Interoperability Approach
      • 3.8.2 Relay Chain Pattern
      • 3.8.3 Virtual Machine Compatibility
      • 3.8.4 Gateway Nodes
      • 3.8.5 Token Bridge
    • 3.9 DGT API and Consumer Apps
      • 3.9.1 Presentation Layer
      • 3.9.2 Application Architecture
    • 3.10 Technology Stack
    • REFERENCES
  • 4. TOKENIZATION AND PROCESSING
    • 4.1 Introduction to Tokenization
      • 4.1.1 DGT Universe
      • 4.1.2 Driving Digital Transformation with Tokens
      • 4.1.3 Real-World Tokenization
      • 4.1.4 Key Concepts and Definitions
    • 4.2 Foundations of Tokenization
      • 4.2.1 Definition and Evolution of Tokenization
      • 4.2.2 Tokenization in the Blockchain/DLT Space
      • 4.2.3 The Tokenization Process
      • 4.2.4 Tokenization on the DGT Platform
      • 4.2.5 Regulatory and Legal Aspects of Tokenization
      • 4.2.6 Typical Blockchain-Based Business Models
    • 4.3 The DEC Transaction Family
      • 4.3.1 DEC Transaction Family Overview
      • 4.3.2 DEC Token Features
      • 4.3.3 DEC Token Protocol
      • 4.3.4 DEC Account Design
      • 4.3.5 DEC Transaction Family Flow
      • 4.3.6 DEC Commands
      • 4.3.7 DEC Processing
      • 4.3.8 Payment Gateways
    • 4.4 Understanding Secondary Tokens
      • 4.4.1 The different types of tokens supported by DGT
      • 4.4.2 How secondary tokens are produced
  • 5. EXPLORING TOKENOMICS
    • 5.1 Introduction
      • 5.1.1 What does tokenomics mean?
      • 5.1.2 Goals of Building the Model for DGT Network
      • 5.1.3 Tokens vs Digital Money
      • 5.1.4 The Phenomenon of Cryptocurrency
      • 5.1.5 Basic Principles of Tokenomics
      • 5.1.6 AB2023 Model
    • 5.2 Node & User Growth
      • 5.2.1 Node Ecosystem
      • 5.2.2 User Growth and Retention Modeling
    • 5.3 Transactions
      • 5.3.1 Transaction Amount Components
      • 5.3.2 Shaping the Transaction Profile: A Three-pronged Approach
      • 5.3.3 Calculation of Transaction Number
    • 5.4 Network Performance Simulation
      • 5.4.1 Endogenous Model
      • 5.4.2 Network Entropy
      • 5.4.3 Network Utility
    • 5.5 Token Supply Model
      • 5.5.1 Introduction to Supply and Demand Dynamics
      • 5.5.2 Token distribution
      • 5.5.3 Supply Protocol
      • 5.5.4 Token Balance and Cumulative Supply
    • 5.6 Token Demand Model
      • 5.6.1 Node-Base Demand
      • 5.6.2 Transaction-Based Token Demand
      • 5.6.3 Staking Part Modeling
      • 5.6.4 Total Demand
    • 5.7 Token Price Simulation
      • 5.7.1 Nelson-Siegel-Svensson model
      • 5.7.2 The Price Model
    • 5.8 Decentralization Measurement
      • 5.8.1 Active Node Index
      • 5.8.2 Node Diversity in Hybrid Networks
      • 5.8.3 Token distribution
      • 5.8.4 Integral Calculation of Decentralization Metric
    • 5.9 Aggregated Metrics
      • 5.9.1 Transaction Throughput: Evaluating Network Performance and Scalability
      • 5.9.2 Market Capitalization: A Dimension of Valuation in Cryptocurrency
      • 5.9.3 Total Value Locked (TVL): A Spotlight on Network Engagement and Trust
  • 6. ADMINISTRATOR GUIDE
    • 6.1 Introduction
      • 6.1.1 Administrator Role
      • 6.1.2 Platform sourcing
      • 6.1.3 DGT Virtualization
      • 6.1.4 Using Pre-Built Virtual Machine Images
      • 6.1.5 Server Preparation
      • 6.1.6 OS Setup and initialization
    • 6.2 DGT CORE: Single Node Setup
      • 6.2.1 Launch the First DGT Node
      • 6.2.2 Dashboard setup
      • 6.2.3 Nodes Port Configuration
      • 6.2.4 Single Node Check
    • 6.3 DGT CORE: Setup Private/Public Network
      • 6.3.1 Network launch preparation
      • 6.3.2 A Virtual Cluster
      • 6.3.3 A Physical Network
      • 6.3.4 Attach node to Existing Network
    • 6.4 DGT Dashboard
    • 6.5 DGT CLI and base transaction families
    • 6.6 GARANASKA: Financial Processing
      • 6.6.1 Overview of DGT’s financial subsystem
      • 6.6.2 DEC emission
      • 6.6.3 Consortium account
      • 6.6.4 User accounts
      • 6.6.5 Payments
    • 6.7 Adjust DGT settings
      • 6.7.1 DGT Topology
      • 6.7.2 Manage local settings
    • 6.8 DGT Maintenance
      • 6.8.1 Stopping and Restarting the Platform
      • 6.8.2 Backing up Databases
      • 6.8.3 Network Performance
      • 6.8.4 Log & Monitoring
Powered by GitBook
On this page
  • 2.5.4.1 Benefits
  • 2.5.4.2 Solution Components
  • 2.5.4.3 Implementation Plan
  1. 2. REAL WORLD APPLICATIONS
  2. 2.5 B2B2C Ecosystems and Horizontal Integration

2.5.4 Value Ecosystem

The case of a decentralized ecosystem built on the DGT platform involves the integration of various vertical or horizontal industries into a unified network, enabling B2B2C interactions. This ecosystem facilitates seamless collaboration, data sharing, and value exchange among these businesses and consumers, fostering loyalty and engagement. It provides a secure and transparent environment where businesses can connect with consumers directly, delivering personalized experiences and targeted offerings.

2.5.4.1 Benefits

  • Integration of Vertical or Horizontal Industries: The decentralized ecosystem allows for the integration of multiple industries, enabling B2B2C interactions and collaboration across sectors. This integration enhances the overall ecosystem value and creates new business opportunities.

  • Seamless Data Sharing: Participants in the ecosystem, including businesses and consumers, can securely share data, enabling real-time information exchange and improved decision-making. This facilitates personalized experiences and tailored offerings for consumers.

  • Value Exchange: The ecosystem enables frictionless value exchange between businesses and consumers through decentralized transactions, smart contracts, and tokenization. This empowers businesses to offer innovative products and services, while consumers can easily access and transact within the ecosystem.

  • Enhanced Loyalty and Engagement: The decentralized ecosystem fosters loyalty and engagement among consumers by providing personalized experiences, targeted rewards, and gamification elements. This encourages repeat interactions and strengthens the relationship between businesses and consumers.

  • Transparency and Trust: The use of blockchain technology ensures transparency and immutability of transactions, enhancing trust between businesses and consumers. This transparency builds confidence and promotes a trustworthy B2B2C environment.

  • Innovation and Collaboration: The decentralized ecosystem encourages innovation and collaboration between businesses and consumers, facilitating co-creation and feedback-driven improvements. This leads to the development of innovative products and services that meet the evolving needs of consumers.

2.5.4.2 Solution Components

  • Primary CRM Integration: Integration with the bank's systems allows for seamless transfer of loyalty tokens, B2B2C financial transactions, and personalized financial services.

  • Loyalty and Rewards System: Integration with loyalty and rewards programs across the abstract industry networks ensures a unified loyalty system for consumers, enabling them to earn and redeem loyalty tokens across multiple networks.

  • User Identity and Verification Catalog: Integration: Integration with user identity and verification systems ensures a seamless and secure experience for consumers across the ecosystem, providing a consistent and trusted user profile across different industry networks.

2.5.4.3 Implementation Plan

Step
Description
Activity
Duration (Weeks)

1

Ecosystem Design and Stakeholder Mapping

Identify the participating industries and stakeholders within the ecosystem

2

2

Technical Architecture and Integration Planning

Design the technical architecture and plan the integration of connecting systems

4

3

Smart Contract Development and Tokenization

Develop and deploy smart contracts and tokenization mechanisms for B2B2C value exchange

6

4

User Experience Design

Design user-friendly interfaces and experiences for businesses and consumers

4

5

Abstract Industry Network Integration

Integrate the abstract industry networks for seamless collaboration and value exchange

4

6

Loyalty and Rewards Program Integration

Integrate loyalty and rewards programs across the abstract industry networks

3

7

User Identity and Verification Integration

Integrate user

Previous2.5.3 Case Decentralized Publishing PlatformNext2.6 More Cases

Last updated 1 year ago