DGT DOCS
  • 1. INTRODUCTION
    • 1.1 Executive Summary
    • 1.2 Why DGT
    • 1.3 Distributed Ledgers Technology
      • 1.3.1 Decentralization approach
      • 1.3.2 Consensus Mechanism
      • 1.3.3 Transactions
      • 1.3.4 Layered Blockchain Architecture
      • 1.3.5 Tokenomics
      • 1.3.6 Web 3 Paradigm
      • 1.3.7 Common Myths about Blockchain
    • 1.4 The DGT Overview
      • 1.4.1 Platform Approach
      • 1.4.2 DGT Functional Architecture
      • 1.4.3 Technology Roadmap
    • 1.5 How to create a Solution with DGT Networks
    • 1.6 Acknowledgments
  • 2. REAL WORLD APPLICATIONS
    • 2.1 Case-Based Approach
      • 2.1.1 DGT Mission
      • 2.1.2 The Methodology
      • 2.1.3 Case Selection
    • 2.2 Supply Chain and Vertical Integration
      • 2.2.1 Logistics Solution for Spare Parts Delivery
      • 2.2.2 DGT Based Solution for Coffee Chain Products
    • 2.3 Innovative Financial Services
      • 2.3.1 Crowdfunding Platform
      • 2.3.2 Real World Assets Tokenization
      • 2.3.3 Virtual Neobank over DGT Network
      • 2.3.4 DGT based NFT Marketplace
    • 2.4 Decentralized Green Energy Market
      • 2.4.1 Peer To Peer Energy Trading
      • 2.4.2 DGT based Carbon Offset Trading
    • 2.5 B2B2C Ecosystems and Horizontal Integration
      • 2.5.1 KYC and User Scoring
      • 2.5.2 Decentralized Marketing Attribution
      • 2.5.3 Case Decentralized Publishing Platform
      • 2.5.4 Value Ecosystem
    • 2.6 More Cases
  • 3. DGT ARCHITECTURE
    • 3.1 Scalable Architecture Design
      • 3.1.1 High Level Architecture
      • 3.1.2 DGT Approach
      • 3.1.3 Unique contribution
      • 3.1.4 Component Based Architecture
    • 3.2 Performance Metrics
    • 3.3 Network Architecture
      • 3.3.1 Nework Architecture in General
      • 3.3.2 Network Identification
      • 3.3.3 H-Net Architecture
      • 3.3.4 Transport Level
      • 3.3.5 Segments
      • 3.3.6 Static and Dynamic Topologies
      • 3.3.7 Cluster Formation
      • 3.3.8 Node Networking
      • 3.3.9 Permalinks Control Protocol
    • 3.4 Fault-Tolerant Architecture
      • 3.4.1 Introduction to Fault Tolerance
      • 3.4.2 F-BFT: The Hierarchical Consensus Mechanism
      • 3.4.3 Cluster Based Algorithms
      • 3.4.4 Arbitrator Security Scheme
      • 3.4.5 Heartbeat Protocol
      • 3.4.6 Oracles and Notaries
      • 3.4.7 DID & KYC
    • 3.5 Transactions and Performance
      • 3.5.1 Transaction Basics
      • 3.5.2 Transaction Processing
      • 3.5.3 Transaction and block signing
      • 3.5.4 Transaction Families
      • 3.5.5 Transaction Receipts
      • 3.5.6 Smart Transactions
      • 3.5.7 Private Transactions
      • 3.5.8 Multi signature
    • 3.6 Data-Centric Model
      • 3.6.1 Data layer overview
      • 3.6.2 Global State
      • 3.6.3 Genesis Record
      • 3.6.4 Sharding
      • 3.6.5 DAG Synchronization
    • 3.7 Cryptography and Security
      • 3.7.1 Security Architecture Approach
      • 3.7.2 Base Cryptography
      • 3.7.3 Permission Design
      • 3.7.4 Key Management
      • 3.7.5 Encryption and Decryption
      • 3.7.6 Secure Multi Party Computation
      • 3.7.7 Cryptographic Agility
      • DGTTECH_3.8.4 Gateway Nodes
    • 3.8 Interoperability
      • 3.8.1 Interoperability Approach
      • 3.8.2 Relay Chain Pattern
      • 3.8.3 Virtual Machine Compatibility
      • 3.8.4 Gateway Nodes
      • 3.8.5 Token Bridge
    • 3.9 DGT API and Consumer Apps
      • 3.9.1 Presentation Layer
      • 3.9.2 Application Architecture
    • 3.10 Technology Stack
    • REFERENCES
  • 4. TOKENIZATION AND PROCESSING
    • 4.1 Introduction to Tokenization
      • 4.1.1 DGT Universe
      • 4.1.2 Driving Digital Transformation with Tokens
      • 4.1.3 Real-World Tokenization
      • 4.1.4 Key Concepts and Definitions
    • 4.2 Foundations of Tokenization
      • 4.2.1 Definition and Evolution of Tokenization
      • 4.2.2 Tokenization in the Blockchain/DLT Space
      • 4.2.3 The Tokenization Process
      • 4.2.4 Tokenization on the DGT Platform
      • 4.2.5 Regulatory and Legal Aspects of Tokenization
      • 4.2.6 Typical Blockchain-Based Business Models
    • 4.3 The DEC Transaction Family
      • 4.3.1 DEC Transaction Family Overview
      • 4.3.2 DEC Token Features
      • 4.3.3 DEC Token Protocol
      • 4.3.4 DEC Account Design
      • 4.3.5 DEC Transaction Family Flow
      • 4.3.6 DEC Commands
      • 4.3.7 DEC Processing
      • 4.3.8 Payment Gateways
    • 4.4 Understanding Secondary Tokens
      • 4.4.1 The different types of tokens supported by DGT
      • 4.4.2 How secondary tokens are produced
  • 5. EXPLORING TOKENOMICS
    • 5.1 Introduction
      • 5.1.1 What does tokenomics mean?
      • 5.1.2 Goals of Building the Model for DGT Network
      • 5.1.3 Tokens vs Digital Money
      • 5.1.4 The Phenomenon of Cryptocurrency
      • 5.1.5 Basic Principles of Tokenomics
      • 5.1.6 AB2023 Model
    • 5.2 Node & User Growth
      • 5.2.1 Node Ecosystem
      • 5.2.2 User Growth and Retention Modeling
    • 5.3 Transactions
      • 5.3.1 Transaction Amount Components
      • 5.3.2 Shaping the Transaction Profile: A Three-pronged Approach
      • 5.3.3 Calculation of Transaction Number
    • 5.4 Network Performance Simulation
      • 5.4.1 Endogenous Model
      • 5.4.2 Network Entropy
      • 5.4.3 Network Utility
    • 5.5 Token Supply Model
      • 5.5.1 Introduction to Supply and Demand Dynamics
      • 5.5.2 Token distribution
      • 5.5.3 Supply Protocol
      • 5.5.4 Token Balance and Cumulative Supply
    • 5.6 Token Demand Model
      • 5.6.1 Node-Base Demand
      • 5.6.2 Transaction-Based Token Demand
      • 5.6.3 Staking Part Modeling
      • 5.6.4 Total Demand
    • 5.7 Token Price Simulation
      • 5.7.1 Nelson-Siegel-Svensson model
      • 5.7.2 The Price Model
    • 5.8 Decentralization Measurement
      • 5.8.1 Active Node Index
      • 5.8.2 Node Diversity in Hybrid Networks
      • 5.8.3 Token distribution
      • 5.8.4 Integral Calculation of Decentralization Metric
    • 5.9 Aggregated Metrics
      • 5.9.1 Transaction Throughput: Evaluating Network Performance and Scalability
      • 5.9.2 Market Capitalization: A Dimension of Valuation in Cryptocurrency
      • 5.9.3 Total Value Locked (TVL): A Spotlight on Network Engagement and Trust
  • 6. ADMINISTRATOR GUIDE
    • 6.1 Introduction
      • 6.1.1 Administrator Role
      • 6.1.2 Platform sourcing
      • 6.1.3 DGT Virtualization
      • 6.1.4 Using Pre-Built Virtual Machine Images
      • 6.1.5 Server Preparation
      • 6.1.6 OS Setup and initialization
    • 6.2 DGT CORE: Single Node Setup
      • 6.2.1 Launch the First DGT Node
      • 6.2.2 Dashboard setup
      • 6.2.3 Nodes Port Configuration
      • 6.2.4 Single Node Check
    • 6.3 DGT CORE: Setup Private/Public Network
      • 6.3.1 Network launch preparation
      • 6.3.2 A Virtual Cluster
      • 6.3.3 A Physical Network
      • 6.3.4 Attach node to Existing Network
    • 6.4 DGT Dashboard
    • 6.5 DGT CLI and base transaction families
    • 6.6 GARANASKA: Financial Processing
      • 6.6.1 Overview of DGT’s financial subsystem
      • 6.6.2 DEC emission
      • 6.6.3 Consortium account
      • 6.6.4 User accounts
      • 6.6.5 Payments
    • 6.7 Adjust DGT settings
      • 6.7.1 DGT Topology
      • 6.7.2 Manage local settings
    • 6.8 DGT Maintenance
      • 6.8.1 Stopping and Restarting the Platform
      • 6.8.2 Backing up Databases
      • 6.8.3 Network Performance
      • 6.8.4 Log & Monitoring
Powered by GitBook
On this page
  1. 3. DGT ARCHITECTURE

REFERENCES

Alqahtani, S., & Demirbas, M. (2021). BigBFT: A Multileader Byzantine Fault Tolerance Protocol for High Throughput. doi:https://doi.org/10.48550/arXiv.2109.12664

Alqahtani, S., & Demirbas, M. (2021). Bottlenecks in Blockchain Consensus Protocols. Retrieved 2023, from https://arxiv.org/pdf/2103.04234.pdf

Balchunas, A. (2007). Border Gateway Protocol. Routeralley. Retrieved 2023, from http://www.routeralley.com/guides/bgp.pdf

Bogdanov, A., Uteshev, A., & Khvatov, V. (2019). Error Detection in the Decentralized Voting Protocol. Lecture Notes in Computer Science book series (LNTCS,volume 11620), pp. 485–494. doi:10.1007/978-3-030-24296-1_38

Buddhavarapu, P., Case, B., Gore, L., Knox, A., Mohassel, P., Sengupta, S., . . . Xue, M. (2021). Multi-key Private Matching for Compute. Cryptology ePrint Archive, Paper 2021/770. Retrieved 2023, from https://eprint.iacr.org/2021/770.pdf

Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., & Maxwell, G. (2018). Bulletproofs: Short Proofs for Confidential Transactions and More. IEEE Symposium on Security and Privacy (SP), 315-334. doi:10.1109/SP.2018.00020

Castro, M., & Liskov, B. (1999). Practical Byzantine Fault Tolerance. Retrieved 2023, from https://www.scs.stanford.edu/nyu/03sp/sched/bfs.pdf

Cisco. (2005). Introduction to EIGRP. Cisco. Retrieved 2023, from https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/13669-1.html

Darville, C., Hofner, P., Ivankovic, F., & Pam, A. (2022). Advanced Models for the OSPF Routing Protocol. Electronic Proceedings in Theoretical Computer Science, 355, 13-26. doi:10.48550/arXiv.2203.09882

Dwork, C., Lynch, N., & Stockmeyer, L. (1988). Consensus in the presence of partial synchrony. ACM 35, 2 (April 1988), 288–323. doi:10.1145/42282.42283

Fischer, M., Lynch, N., & Paterson, M. (1985). Impossibility of distributed consensus with one faulty process. J.ACM 32, pp. 374-382. doi:10.1145/3149.214121

Ghosh, R., & Ghosh, H. (2022). Gossip Protocols. doi:10.1002/9781119825968.ch10.

Hunt, P., Mahadev, K., Junqueira, F., & Reed, B. (n.d.). ZooKeeper: Wait-free Coordination for Internet-scale Systems. Yahoo ! Research. Retrieved 2023, from https://www.researchgate.net/publication/228366039_ZooKeeper_Wait-free_Coordination_for_Internet-scale_Systems#fullTextFileContent

IEEE. (2022). IEEE/ISO/IEC International Standard for Software, systems and enterprise--Architecture description. Chicago. doi:10.1109/IEEESTD.2022.9938446

ITU-T. (2019). Technical Specification FG DLT D3.1: Distributed ledger technology reference architecture. Retrieved 2023, from https://www.itu.int/en/ITU-T/focusgroups/dlt/Documents/d31.pdf

Jalalzai, M., Niu, J., & Feng, C. (2020). Fast-HotStuff: A Fast and Robust BFT Protocol for Blockchains. Retrieved 2023, from https://arxiv.org/pdf/2010.11454.pdf

Jiang, Y., Zhou, Y., & Feng, T. (2022). A Blockchain-Based Secure Multi-Party Computation Scheme with Multi-Key Fully Homomorphic Proxy Re-Encryption. (Information. 2022; 13(10):481). doi:https://doi.org/10.3390/info13100481

King, S., & Nadal, S. (2012). PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake. Retrieved 2023, from https://people.cs.georgetown.edu/~clay/classes/fall2017/835/papers/peercoin-paper.pdf

Li, W., Feng, C., Zhang, L., Xu, H., Cao, B., & Imran, M. (2020). A Scalable Multi-Layer PBFT Consensus for Blockchain. IEEE Transactions on Parallel and Distributed Systems ( Volume: 32, Issue: 5, 01 May 2021), 1146 - 1160. doi:10.1109/TPDS.2020.3042392

Lin, Q. &. (2021). Measuring Decentralization in Bitcoin and Ethereum using Multiple Metrics and Granularities. Retrieved 2023, from https://arxiv.org/pdf/2101.10699.pdf

Matoussi, O. (2021). NoC Performance Model for Efficient Network Latency Estimation. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), 994-999. doi:10.23919/DATE51398.2021.9474101

Nakomoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Retrieved 2023, from https://bitcoin.org/bitcoin.pdf

Nick, J., Ruffing, T., & Seurin, Y. (2021). MuSig2: Simple Two-Round Schnorr Multi-signatures. Cryptology ePrint Archive, Report 2021/097. doi:10.1007/978-3-030-84242-0_8

Ongaro, D., & Ousterhout, J. (2014). In Search of an Understandable Consensus Algorithm. Retrieved from https://web.stanford.edu/~ouster/cgi-bin/papers/OngaroPhD.pdf

Osaku, D., Otis, D., & Mandarine, M. (2018). Rooter: A Methodology for the Typical Unification of Access Points and Redundancy in a Big Data ecosystem. Journal of Computer and Systems Sciences International. Retrieved 2023, from https://www.researchgate.net/publication/333669698_Rooter_A_Methodology_for_the_Typical_Unification_of_Access_Points_and_Redundancy_in_a_Big_Data_ecosystem#fullTextFileContent

Trehan, A. (2012). Self-healing systems and virtual structures. arXiv: Distributed, Parallel, and Cluster Computing. Retrieved 2023, from https://arxiv.org/pdf/1202.2466.pdf

W3C. (2022, July 19). Decentralized Identifiers (DIDs) v1.0. Retrieved from https://www.w3.org/TR/did-core/#:~:text=W3C%20liability%20%2C%20trademark%20and%20permissive%20document%20license,as%20determined%20by%20the%20controller%20of%20the%20DID.

Y. Jia, C. X. (2022). Measuring Decentralization in Emerging Public Blockchains (Vol. 2022 International Wireless Communications and Mobile Computing (IWCMC)). Dubrovnik. doi:10.1109/IWCMC55113.2022.9

ZeroMQ. (2020). Advanced Request-Reply Patterns. Retrieved from ØMQ - The Guide : https://zguide.zeromq.org/docs/chapter3/#toc24

Previous3.10 Technology StackNext4. TOKENIZATION AND PROCESSING

Last updated 1 year ago