DGT DOCS
  • 1. INTRODUCTION
    • 1.1 Executive Summary
    • 1.2 Why DGT
    • 1.3 Distributed Ledgers Technology
      • 1.3.1 Decentralization approach
      • 1.3.2 Consensus Mechanism
      • 1.3.3 Transactions
      • 1.3.4 Layered Blockchain Architecture
      • 1.3.5 Tokenomics
      • 1.3.6 Web 3 Paradigm
      • 1.3.7 Common Myths about Blockchain
    • 1.4 The DGT Overview
      • 1.4.1 Platform Approach
      • 1.4.2 DGT Functional Architecture
      • 1.4.3 Technology Roadmap
    • 1.5 How to create a Solution with DGT Networks
    • 1.6 Acknowledgments
  • 2. REAL WORLD APPLICATIONS
    • 2.1 Case-Based Approach
      • 2.1.1 DGT Mission
      • 2.1.2 The Methodology
      • 2.1.3 Case Selection
    • 2.2 Supply Chain and Vertical Integration
      • 2.2.1 Logistics Solution for Spare Parts Delivery
      • 2.2.2 DGT Based Solution for Coffee Chain Products
    • 2.3 Innovative Financial Services
      • 2.3.1 Crowdfunding Platform
      • 2.3.2 Real World Assets Tokenization
      • 2.3.3 Virtual Neobank over DGT Network
      • 2.3.4 DGT based NFT Marketplace
    • 2.4 Decentralized Green Energy Market
      • 2.4.1 Peer To Peer Energy Trading
      • 2.4.2 DGT based Carbon Offset Trading
    • 2.5 B2B2C Ecosystems and Horizontal Integration
      • 2.5.1 KYC and User Scoring
      • 2.5.2 Decentralized Marketing Attribution
      • 2.5.3 Case Decentralized Publishing Platform
      • 2.5.4 Value Ecosystem
    • 2.6 More Cases
  • 3. DGT ARCHITECTURE
    • 3.1 Scalable Architecture Design
      • 3.1.1 High Level Architecture
      • 3.1.2 DGT Approach
      • 3.1.3 Unique contribution
      • 3.1.4 Component Based Architecture
    • 3.2 Performance Metrics
    • 3.3 Network Architecture
      • 3.3.1 Nework Architecture in General
      • 3.3.2 Network Identification
      • 3.3.3 H-Net Architecture
      • 3.3.4 Transport Level
      • 3.3.5 Segments
      • 3.3.6 Static and Dynamic Topologies
      • 3.3.7 Cluster Formation
      • 3.3.8 Node Networking
      • 3.3.9 Permalinks Control Protocol
    • 3.4 Fault-Tolerant Architecture
      • 3.4.1 Introduction to Fault Tolerance
      • 3.4.2 F-BFT: The Hierarchical Consensus Mechanism
      • 3.4.3 Cluster Based Algorithms
      • 3.4.4 Arbitrator Security Scheme
      • 3.4.5 Heartbeat Protocol
      • 3.4.6 Oracles and Notaries
      • 3.4.7 DID & KYC
    • 3.5 Transactions and Performance
      • 3.5.1 Transaction Basics
      • 3.5.2 Transaction Processing
      • 3.5.3 Transaction and block signing
      • 3.5.4 Transaction Families
      • 3.5.5 Transaction Receipts
      • 3.5.6 Smart Transactions
      • 3.5.7 Private Transactions
      • 3.5.8 Multi signature
    • 3.6 Data-Centric Model
      • 3.6.1 Data layer overview
      • 3.6.2 Global State
      • 3.6.3 Genesis Record
      • 3.6.4 Sharding
      • 3.6.5 DAG Synchronization
    • 3.7 Cryptography and Security
      • 3.7.1 Security Architecture Approach
      • 3.7.2 Base Cryptography
      • 3.7.3 Permission Design
      • 3.7.4 Key Management
      • 3.7.5 Encryption and Decryption
      • 3.7.6 Secure Multi Party Computation
      • 3.7.7 Cryptographic Agility
      • DGTTECH_3.8.4 Gateway Nodes
    • 3.8 Interoperability
      • 3.8.1 Interoperability Approach
      • 3.8.2 Relay Chain Pattern
      • 3.8.3 Virtual Machine Compatibility
      • 3.8.4 Gateway Nodes
      • 3.8.5 Token Bridge
    • 3.9 DGT API and Consumer Apps
      • 3.9.1 Presentation Layer
      • 3.9.2 Application Architecture
    • 3.10 Technology Stack
    • REFERENCES
  • 4. TOKENIZATION AND PROCESSING
    • 4.1 Introduction to Tokenization
      • 4.1.1 DGT Universe
      • 4.1.2 Driving Digital Transformation with Tokens
      • 4.1.3 Real-World Tokenization
      • 4.1.4 Key Concepts and Definitions
    • 4.2 Foundations of Tokenization
      • 4.2.1 Definition and Evolution of Tokenization
      • 4.2.2 Tokenization in the Blockchain/DLT Space
      • 4.2.3 The Tokenization Process
      • 4.2.4 Tokenization on the DGT Platform
      • 4.2.5 Regulatory and Legal Aspects of Tokenization
      • 4.2.6 Typical Blockchain-Based Business Models
    • 4.3 The DEC Transaction Family
      • 4.3.1 DEC Transaction Family Overview
      • 4.3.2 DEC Token Features
      • 4.3.3 DEC Token Protocol
      • 4.3.4 DEC Account Design
      • 4.3.5 DEC Transaction Family Flow
      • 4.3.6 DEC Commands
      • 4.3.7 DEC Processing
      • 4.3.8 Payment Gateways
    • 4.4 Understanding Secondary Tokens
      • 4.4.1 The different types of tokens supported by DGT
      • 4.4.2 How secondary tokens are produced
  • 5. EXPLORING TOKENOMICS
    • 5.1 Introduction
      • 5.1.1 What does tokenomics mean?
      • 5.1.2 Goals of Building the Model for DGT Network
      • 5.1.3 Tokens vs Digital Money
      • 5.1.4 The Phenomenon of Cryptocurrency
      • 5.1.5 Basic Principles of Tokenomics
      • 5.1.6 AB2023 Model
    • 5.2 Node & User Growth
      • 5.2.1 Node Ecosystem
      • 5.2.2 User Growth and Retention Modeling
    • 5.3 Transactions
      • 5.3.1 Transaction Amount Components
      • 5.3.2 Shaping the Transaction Profile: A Three-pronged Approach
      • 5.3.3 Calculation of Transaction Number
    • 5.4 Network Performance Simulation
      • 5.4.1 Endogenous Model
      • 5.4.2 Network Entropy
      • 5.4.3 Network Utility
    • 5.5 Token Supply Model
      • 5.5.1 Introduction to Supply and Demand Dynamics
      • 5.5.2 Token distribution
      • 5.5.3 Supply Protocol
      • 5.5.4 Token Balance and Cumulative Supply
    • 5.6 Token Demand Model
      • 5.6.1 Node-Base Demand
      • 5.6.2 Transaction-Based Token Demand
      • 5.6.3 Staking Part Modeling
      • 5.6.4 Total Demand
    • 5.7 Token Price Simulation
      • 5.7.1 Nelson-Siegel-Svensson model
      • 5.7.2 The Price Model
    • 5.8 Decentralization Measurement
      • 5.8.1 Active Node Index
      • 5.8.2 Node Diversity in Hybrid Networks
      • 5.8.3 Token distribution
      • 5.8.4 Integral Calculation of Decentralization Metric
    • 5.9 Aggregated Metrics
      • 5.9.1 Transaction Throughput: Evaluating Network Performance and Scalability
      • 5.9.2 Market Capitalization: A Dimension of Valuation in Cryptocurrency
      • 5.9.3 Total Value Locked (TVL): A Spotlight on Network Engagement and Trust
  • 6. ADMINISTRATOR GUIDE
    • 6.1 Introduction
      • 6.1.1 Administrator Role
      • 6.1.2 Platform sourcing
      • 6.1.3 DGT Virtualization
      • 6.1.4 Using Pre-Built Virtual Machine Images
      • 6.1.5 Server Preparation
      • 6.1.6 OS Setup and initialization
    • 6.2 DGT CORE: Single Node Setup
      • 6.2.1 Launch the First DGT Node
      • 6.2.2 Dashboard setup
      • 6.2.3 Nodes Port Configuration
      • 6.2.4 Single Node Check
    • 6.3 DGT CORE: Setup Private/Public Network
      • 6.3.1 Network launch preparation
      • 6.3.2 A Virtual Cluster
      • 6.3.3 A Physical Network
      • 6.3.4 Attach node to Existing Network
    • 6.4 DGT Dashboard
    • 6.5 DGT CLI and base transaction families
    • 6.6 GARANASKA: Financial Processing
      • 6.6.1 Overview of DGT’s financial subsystem
      • 6.6.2 DEC emission
      • 6.6.3 Consortium account
      • 6.6.4 User accounts
      • 6.6.5 Payments
    • 6.7 Adjust DGT settings
      • 6.7.1 DGT Topology
      • 6.7.2 Manage local settings
    • 6.8 DGT Maintenance
      • 6.8.1 Stopping and Restarting the Platform
      • 6.8.2 Backing up Databases
      • 6.8.3 Network Performance
      • 6.8.4 Log & Monitoring
Powered by GitBook
On this page
  1. 3. DGT ARCHITECTURE
  2. 3.3 Network Architecture

3.3.6 Static and Dynamic Topologies

Previous3.3.5 SegmentsNext3.3.7 Cluster Formation

Last updated 1 year ago

Static topology has a pre-marked structure where clusters and vacant “cells” for new nodes are defined. Dynamic topology only defines the conditions for adding nodes, the fulfillment of which allows the node to join the cluster. Joining closed segments within the H-Net architecture requires confirmation of the certificate’s ledger by notaries. The main types of definitions for network architecture include:

  • SEED – the core of the main network that is launched during the first network initialization. These nodes differ by having public keys directly written in the configuration files (later loaded into the ledger). They form a network of trust and are the equivalent of genesis-structures in similar systems. The SEED structure is not required for the existence of the network after a certain time but is associated with the initial launch of the network.

  • PRIVATE SEGMENT – closed network segments allow nodes to connect based on a dedicated Node Cell, which is the specific cluster number and the number of nodes reserved for the specific node. When joining, the new node provides the details of a certificate it was previously issued, and based on that, its membership is confirmed in a particular cluster.

  • PUBLIC SEGMENT – joining the public segment (the only one within the network) requires an understanding of the gateway: a node with a certain IP and open ports that allows one to “find” the desired cluster and a specific cell. This can be done through off-line communication or through accessing SDN (special listings of gateways hosted in the cloud, such as Google Drive, which may list various gateways or other SDN files).

The figure below shows a general network diagram with indications for various segment types:

The dynamic nature of the network is also determined by the different choices of network ports, which can be changed dynamically and allow for rebuilding configuration on the go. The main dynamic support for DGT does not come from the GOSSIP protocol, but rather from the topological family of transactions. The joining of a node can also be determined by anchor mechanisms, such as the fulfillment of preconditions for payments or reservations of ETH in the Ethereum network.

Figure 14 Dynamic Network Approach